1,449 research outputs found

    Stability Analysis of Optimal Velocity Model for Traffic and Granular Flow under Open Boundary Condition

    Full text link
    We analyzed the stability of the uniform flow solution in the optimal velocity model for traffic and granular flow under the open boundary condition. It was demonstrated that, even within the linearly unstable region, there is a parameter region where the uniform solution is stable against a localized perturbation. We also found an oscillatory solution in the linearly unstable region and its period is not commensurate with the periodicity of the car index space. The oscillatory solution has some features in common with the synchronized flow observed in real traffic.Comment: 4 pages, 6 figures. Typos removed. To appear in J. Phys. Soc. Jp

    Mariner Mars 1969 SCAN control subsystem design and analysis

    Get PDF
    Design and analysis of self correcting automatic navigation system for Mariner Mars spacecraf

    Traffic Network Optimum Principle - Minimum Probability of Congestion Occurrence

    Full text link
    We introduce an optimum principle for a vehicular traffic network with road bottlenecks. This network breakdown minimization (BM) principle states that the network optimum is reached, when link flow rates are assigned in the network in such a way that the probability for spontaneous occurrence of traffic breakdown at one of the network bottlenecks during a given observation time reaches the minimum possible value. Based on numerical simulations with a stochastic three-phase traffic flow model, we show that in comparison to the well-known Wardrop's principles the application of the BM principle permits considerably greater network inflow rates at which no traffic breakdown occurs and, therefore, free flow remains in the whole network.Comment: 22 pages, 6 figure

    Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics

    Full text link
    Based on the statistical evaluation of experimental single-vehicle data, we propose a quantitative interpretation of the erratic scattering of flow-density data in synchronized traffic flows. A correlation analysis suggests that the dynamical flow-density data are well compatible with the so-called jam line characterizing fully developed traffic jams, if one takes into account the variation of their propagation speed due to the large variation of the netto time gaps (the inhomogeneity of traffic flow). The form of the time gap distribution depends not only on the density, but also on the measurement cross section: The most probable netto time gap in congested traffic flow upstream of a bottleneck is significantly increased compared to uncongested freeway sections. Moreover, we identify different power-law scaling laws for the relative variance of netto time gaps as a function of the sampling size. While the exponent is -1 in free traffic corresponding to statistically independent time gaps, the exponent is about -2/3 in congested traffic flow because of correlations between queued vehicles.Comment: For related publications see http://www.helbing.or

    Microscopic features of moving traffic jams

    Full text link
    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with "moving blanks" within the jam. Empirical features of the moving blanks are found. Based on microscopic models in the context of three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Structure of moving jam fronts is studied based in microscopic traffic simulations. Non-linear effects associated with moving jam propagation are numerically investigated and compared with empirical results.Comment: 19 pages, 12 figure

    Z3_3-graded differential geometry of quantum plane

    Full text link
    In this work, the Z3_3-graded differential geometry of the quantum plane is constructed. The corresponding quantum Lie algebra and its Hopf algebra structure are obtained. The dual algebra, i.e. universal enveloping algebra of the quantum plane is explicitly constructed and an isomorphism between the quantum Lie algebra and the dual algebra is given.Comment: 17 page

    General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

    Full text link
    An asymptotic method for finding instabilities of arbitrary dd-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of 2- and 3-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order one. The performed analysis explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E (April 1st, 1996

    Non Abelian gauge symmetries induced by the unobservability of extra-dimensions in a Kaluza-Klein approach

    Full text link
    In this work we deal with the extension of the Kaluza-Klein approach to a non-Abelian gauge theory; we show how we need to consider the link between the n-dimensional model and a four-dimensional observer physics, in order to reproduce fields equations and gauge transformations in the four-dimensional picture. More precisely, in fields equations any dependence on extra-coordinates is canceled out by an integration, as consequence of the unobservability of extra-dimensions. Thus, by virtue of this extra-dimensions unobservability, we are able to recast the multidimensional Einstein equations into the four-dimensional Einstein-Yang-Mills ones, as well as all the right gauge transformations of fields are induced. The same analysis is performed for the Dirac equation describing the dynamics of the matter fields and, again, the gauge coupling with Yang-Mills fields are inferred from the multidimensional free fields theory, together with the proper spinors transformations.Comment: 5 pages, no figures, to appear in Mod. Phys. Lett.

    Examples of derivation-based differential calculi related to noncommutative gauge theories

    Full text link
    Some derivation-based differential calculi which have been used to construct models of noncommutative gauge theories are presented and commented. Some comparisons between them are made.Comment: 22 pages, conference given at the "International Workshop in honour of Michel Dubois-Violette, Differential Geometry, Noncommutative Geometry, Homology and Fundamental Interactions". To appear in a special issue of International Journal of Geometric Methods in Modern Physic

    Self-replication and splitting of domain patterns in reaction-diffusion systems with fast inhibitor

    Full text link
    An asymptotic equation of motion for the pattern interface in the domain-forming reaction-diffusion systems is derived. The free boundary problem is reduced to the universal equation of non-local contour dynamics in two dimensions in the parameter region where a pattern is not far from the points of the transverse instabilities of its walls. The contour dynamics is studied numerically for the reaction-diffusion system of the FitzHugh-Nagumo type. It is shown that in the asymptotic limit the transverse instability of the localized domains leads to their splitting and formation of the multidomain pattern rather than fingering and formation of the labyrinthine pattern.Comment: 9 pages (ReVTeX), 5 figures (postscript). To be published in Phys. Rev.
    • …
    corecore